32 research outputs found

    A new approach for optimising GNSS positioning performance in harsh observation environments

    Get PDF
    Maintaining good positioning performance has always been a challenging task for Global Navigation Satellite Systems (GNSS) applications in partially obstructed environments. A method that can optimise positioning performance in harsh environments is proposed. Using a carrier double-difference (DD) model, the influence of the satellite-pair geometry on the correlation among different equations has been researched. This addresses the critical relationship between DD equations and its ill-posedness. From analysing the collected multi-constellation observations, a strong correlation between the condition number and the positioning standard deviation is detected as the correlation coefficient is larger than 0·92. Based on this finding, a new method for determining the reference satellites by using the minimum condition number rather than the maximum elevation is proposed. This reduces the ill-posedness of the co-factor matrix, which improves the single-epoch positioning solution with a fixed DD ambiguity. Finally, evaluation trials are carried out by masking some satellites to simulate common satellite obstruction scenarios including azimuth shielding, elevation shielding and strip shielding. Results indicate the proposed approach improves the positioning stability with multi-constellation satellites notably in harsh environments

    Analysis of ill posedness in double differential ambiguity resolution of BDS

    Get PDF
    The ill posedness in a variance–covariance matrix will directly determine the convergence speed and accuracy of integer ambiguities. Unlike GPS or GLONASS, BDS (BeiDou Navigation Satellite System) consists of not only MEO satellites but also GEO and IGSO satellites, both of which are high orbit satellites. The angular velocities of the GEO and IGSO satellites are much smaller compared with MEO satellites. The changes of the geometric structure between satellites and stations of the high orbit satellites GEO/IGSO in BDS are not obvious during short observational spans due to their relatively small angular velocity. This results in stronger correlation of equations between adjacent epochs while calculating ambiguities, leading to serious ill posedness. In this paper the ill posedness of double differential (DD) ambiguity resolution (AR) of the current BDS was analysed. On this basis, some different combinations of GEO, IGSO and MEO satellites of BDS were used in the AR experiments to reveal the characteristics of ill posedness. Moreover, AR experiments of GPS, GLONASS and BDS/GPS/GLONASS fusion were also carried out for comparison with BDS. These experiments indicate that the AR of the current BDS is a more serious ill posed problem, and therefore takes much more time for AR fixing than GPS or GLONASS. The fusion with GPS or GLONASS, however, will solve the ill posed problem effectively and improve the AR much more, achieving fixes even instantaneously

    Real-Time PPP Based on the Coupling Estimation of Clock Bias and Orbit Error with Broadcast Ephemeris

    No full text
    Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the traditional PPP mode because of its advantages of independence, high positioning precision, and real-time performance. It could be an alternative solution for regional positioning service before global PPP service comes into operation

    LSOS: An FG Position Method Based on Group Phase Ranging Ambiguity Estimation of BeiDou Pseudolite

    No full text
    Due to the influence of indoor space environments, the carrier phase information obtained by the BeiDou pseudo-satellite often has the issue of cycle slips, which makes the user unable to carry out high-precision positioning. Aiming at the problem of ambiguity resolution (AR) and location in large-scale occluded space (LSOS), a factor graph (FG) position method based on group phase ranging ambiguity estimation of BeiDou pseudolite is proposed. Firstly, by introducing the principle of group phase period quantization and utilizing the multi-frequency characteristic of the BeiDou pseudo-satellite, the carrier phase propagation ambiguity of the BeiDou pseudo-satellite can be estimated quickly. On this basis, by introducing the shuffled frog leading algorithm (SFLA) assisted factor graph optimization location estimation method, the BeiDou pseudo-satellite positioning process in LSOS is realized. The experimental results show that the proposed method can solve the problem of fast estimation of ranging ambiguity of BeiDou pseudolite in LSOS, and the ranging accuracy can be improved to two wavelength ranges. In the further location experiment, it is found that the algorithm can not only guarantee the real-time location output but also improve the location precision to sub-meter level under the multi-frequency combination; the optimal location test precision is 9 cm, the maximum positioning error is 50 cm. This method successfully solves the problem wherein the BeiDou pseudo-satellite cannot provide real-time, continuous, and high-precision positioning in LSOS

    Performance of Single-Epoch EWL/WL/NL Ambiguity-Fixed Precise Point Positioning with Regional Atmosphere Modelling

    No full text
    Precise point positioning (PPP) with ambiguity resolution (AR) can improve positioning accuracy and reliability. The narrow-lane (NL) AR solution can reach centimeter-level accuracy but there is a certain initialization time. In contrast, extra-wide-lane (EWL) or wide-lane (WL) ambiguity can be fixed instantaneously. However, due to the limited correction accuracy of the empirical atmospheric model, the positioning accuracy is only a few decimeters. In order to further improve the real-time performance of PPP while ensuring accuracy, we developed a multi-system multi-frequency uncombined PPP single-epoch EWL/WL/NL AR method with regional atmosphere modelling. In the proposed method, the precise atmosphere, including zenith wet-troposphere delay (ZWD) and the slant ionosphere, is extracted through multi-frequency stepwise AR, which then is both interpolated and broadcast to users. By adding regional atmosphere constraints, users can achieve single-epoch PPP AR with centimeter-level accuracy. To verify the algorithm, four sets of reference networks with different inter-station distances are used for experiments. With atmosphere constraints, the accuracy of the single-epoch WL solution can be improved from the decimeter level to a few centimeters, with an improvement of more than 90%, and the epoch fix rate can also be improved to varying degrees, especially for the dual-frequency case. Due to the enlarged noise of the EWL combination, its accuracy is at the decimeter level, while the accuracy of the WL/NL solution can reach several centimeters. However, reliable NL ambiguity-fixing tightly relies on atmosphere constraints with sufficiently high accuracy. When the modelling of the atmosphere correction is not accurate enough, the NL AR performance is degraded, although this situation can be improved to a certain extent through the multi-GNSS combination. In contrast, in this case, the WL ambiguity can be successfully fixed and can support the precise positioning with an accuracy of several centimeters

    LiDAR-Inertial-GNSS Fusion Positioning System in Urban Environment: Local Accurate Registration and Global Drift-Free

    No full text
    Aiming at the insufficient accuracy and accumulated error of the point cloud registration of LiDAR-inertial odometry (LIO) in an urban environment, we propose a LiDAR-inertial-GNSS fusion positioning algorithm based on voxelized accurate registration. Firstly, a voxelized point cloud downsampling method based on curvature segmentation is proposed. Rough classification is carried out by the curvature threshold, and the voxelized point cloud downsampling is performed using HashMap instead of a random sample consensus algorithm. Secondly, a point cloud registration model based on the nearest neighbors of the point and neighborhood point sets is constructed. Furthermore, an iterative termination threshold is set to reduce the probability of the local optimal solution. The registration time of a single frame point cloud is increased by an order of magnitude. Finally, we propose a LIO-GNSS fusion positioning model based on graph optimization that uses GNSS observations weighted by confidence to globally correct local drift. The experimental results show that the average root mean square error of the absolute trajectory error of our algorithm is 1.58m on average in a large-scale outdoor environment, which is approximately 83.5% higher than that of similar algorithms. It is fully proved that our algorithm can realize a more continuous and accurate position and attitude estimation and map reconstruction in urban environments

    Fusion of GNSS and Speedometer Based on VMD and Its Application in Bridge Deformation Monitoring

    No full text
    Real-time dynamic displacement and spectral response on the midspan of Jiangyin Bridge were calculated using Global Navigation Satellite System (GNSS) and a speedometer for the purpose of understanding the dynamic behavior and the temporal evolution of the bridge structure. Considering that the GNSS measurement noise is large and the velocity/acceleration sensors cannot measure the low-frequency displacement, the Variational Mode Decomposition (VMD) algorithm was used to extract the low-frequency displacement of GNSS. Then, the low-frequency displacement extracted from the GNSS time series and the high-frequency vibration calculated by speedometer were combined in this paper in order to obtain the high precision three-dimensional dynamic displacement of the bridge in real time. Simulation experiment and measured data show that the VMD algorithm could effectively resist the modal aliasing caused by noise and discontinuous signals compared with the commonly used Empirical Mode Decomposition (EMD) algorithm, which is guaranteed to get high-precision fusion data. Finally, the fused displacement results can identify high-frequency vibrations and low-frequency displacements of a mm level, which can be used to calculate the spectral characteristics of the bridge and provide reference to evaluate the dynamic and static loads, and the health status of the bridge in the full frequency domain and the full time domain

    Multipath extraction and mitigation for bridge deformation monitoring using a single-difference model

    No full text
    Multipath is one of the primary error sources in high precision GNSS applications. Since it is highly correlated with observation environments , the multipath effect is difficult to be parameterized with an empirical model or eliminated by current differencing techniques. A sophisticated multipath extraction and mitigation technique is proposed. The technique uses the spectrum density of the time series of single-difference (SD) phase residuals to identify which portions of the observation environments contribute the various multipath constituents. Wavelet analysis is used to extract the time-varying frequency and magnitude contents of multipath. Multipath templates are built to assess the performance of ambiguity resolution before and after multipath mitigation. Using GPS data measured at the Forth Road Bridge in Scotland, we identify that there are two types of multipath with different affecting characteristics on the bridge. The initial analysis reveals that the correlations between adjacent days remain higher than 80% for both carrier phase and pseudorange multipath. Further comparisons indicate that the standard deviations of the residuals are reduced roughly by 30% for most of the satellites when multipath templates are applied, whereas the reductions of the mean standard deviations of the coordinate components, from 13 consecutive days, maintain stable at about 30% for a 1.5 km baseline and 45% for a 36 m baseline. It is also evident that ambiguity resolution has significant improvement with applying multipath mitigation, contributing to more accurate and reliable ambiguity results in high-precision deformation monitoring

    Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations

    No full text
    The regional constellation of the BeiDou navigation satellite system (BDS) has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK) positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR). We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL) ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2) ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF) strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system

    An Efficient Module for Instance Segmentation Based on Multi-Level Features and Attention Mechanisms

    No full text
    Recently, multi-level feature networks have been extensively used in instance segmentation. However, because not all features are beneficial to instance segmentation tasks, the performance of networks cannot be adequately improved by synthesizing multi-level convolutional features indiscriminately. In order to solve the problem, an attention-based feature pyramid module (AFPM) is proposed, which integrates the attention mechanism on the basis of a multi-level feature pyramid network to efficiently and pertinently extract the high-level semantic features and low-level spatial structure features; for instance, segmentation. Firstly, we adopt a convolutional block attention module (CBAM) into feature extraction, and sequentially generate attention maps which focus on instance-related features along the channel and spatial dimensions. Secondly, we build inter-dimensional dependencies through a convolutional triplet attention module (CTAM) in lateral attention connections, which is used to propagate a helpful semantic feature map and filter redundant informative features irrelevant to instance objects. Finally, we construct branches for feature enhancement to strengthen detailed information to boost the entire feature hierarchy of the network. The experimental results on the Cityscapes dataset manifest that the proposed module outperforms other excellent methods under different evaluation metrics and effectively upgrades the performance of the instance segmentation method
    corecore